
1

Fuller Fellowship 2021

Green Software Engineering
— Developer Guide

2

Introduction 3

The Problem 4

More Devices Require More Energy 5

Data Centre Proliferation 5

Defining Carbon Offsets 6

What are the industries doing about it? 7

What can we do about it? 8

Green Hosting 8

Green Development 9

Carbon Offsetting 10

The Principles 11

1. Carbon 12

2. Electricity 12

3. Carbon Intensity 13

4. Embodied Carbon 15

5. Energy Proportionality 16

6. Networking 16

7. Demand Shaping 17

8. Measurement and Optimisation 18

Applying the Principles 20

Conclusion 24

Contents

3

Introduction

Green Software Engineering aligns with my interest
in software engineering, while also aligning with my
(and Fuller’s) interest in being more environmentally
responsible, and more active when it comes to curbing
our digital carbon footprint.

The goal of this publication is to inform the reader
(specifically the development team) of the eight
principles of Green Software Engineering as outlined by
Asim Hussain, Green Cloud Advocacy Lead at Microsoft.

Iit is my hope that these best practices will place
our development team, and Fuller, in a more
environmentally responsible position when it comes
to software development and utilising external cloud
based resources.

Marko Rapaic

Introduction

https://asim.dev/

4

As web developers, thinking about the environmental
impact of every resource we use while developing
websites doesn’t necessarily come naturally to us. It’s
very easy to ignore the carbon impact of the choices we
make in favour of making choices that save us time and
money.

Garnier writes that the reality is that everything has a
cost — our computers, the data centres we download
resources from, the servers we host our websites on —
which means everything has a carbon impact.

“Due to software’s ethereal nature, it’s
hard to visualise how it impacts our
environment.”

According to Garnier, the Information and
Communications Technology (ICT) sector is growing at
an astounding rate, consuming more than two percent
of global emissions — practically the same as the
aviation industry’s carbon footprint from fuel emissions.

As a result, the impact has become too large to
disregard, and the impact will only worsen with the
development and distribution of more devices, data
centres and other related technologies.

However, it’s not too late. With the right mix of research
and planning, there are ways we can initiate change for
good.

(websites+ apps);

(data-centres);

<cloud-based-services>

The Problem

The Problem

https://www.cortical.io/blog/green-software-a-new-trend-for-a-better-planet/

5

The Problem

As stated by Hawkins, although the ICT sector currently
makes up two per cent of global emissions, if the
growth in digital consumption continues on the same
trajectory, by 2040 the emissions will make up 15
percent of global emissions. This is the same as half of
the world’s transportation sector emissions.

Part of the reason for this explosive growth is the Internet
of Things (IoT) – connected physical objects exchanging
data over a wireless network. Juniper Research
reported that the number of IoT connections will rise
from 35 billion in 2020 to 83 billion in 2024, which is
a 130 percent growth in just four years. And by 2023,
66 percent of the global population will have internet
access (compared to 51 percent in 2018).

As this trend continues, a very real consideration is
whether or not there will actually be enough electricity
to power this seemingly endless increase of devices (not
to mention data centres). Current sources of electricity
(fossil fuels and nuclear power) are not ideal and while
renewable energy sources such as wind and solar are
growing rapidly, they may not be in a position to pick up
the slack in the next decade.

The rise in the number of devices and cloud-based
services has led to an expansion of data centres, which
consume two percent of the world’s electricity. By 2030,
that number could be eight percent.

Hawkins says “Data Centre Alley” is a little-known tech
hub that processes 70 per cent of global internet traffic.
Data Cenre Alley is home to a cluster of data centres,
businesses, and government organisations in Ashburn,
Virginia.

Companies like Amazon, Google, Apple, and Microsoft
own or rent data centres in Data Centre Alley. Amazon
dominates the world of cloud-computing real estate,
owning enough data centres in the area that nearly
a third of the internet runs on Amazon Web Services
(AWS). Because of this, many tech companies and their
stakeholders want their cloud-computing services to be
hosted close by, for the quickest service and updates.

However, Hawkins says that what tech companies don’t
realise is while AWS may try to dedicate resources
to powering their operations with renewable energy,
the source of electricity for data centres is completely
dependent on the local region. In this case, Data Centre
Alley is reliant on Loudoun County, Virginia’s resources:
a utility provider called Dominion Energy that happens to
run on mostly fossil fuels.

Many tech companies are then faced with a conundrum:
choosing between high performance service and
sustainability.

As of 2020, AWS has established five carbon-neutral
zones where they purchase carbon offsets to balance
the emissions coming from those zones. However, this
solution is more complex than meets the eye, Hawkins
explains.

More Devices Require More Energy

Data Centre Proliferation

https://madeintandem.com/blog/environmental-impact-tech-industry/
https://www.eng.mcmaster.ca/news/study-shows-smartphones-harm-environment
https://www.eng.mcmaster.ca/news/study-shows-smartphones-harm-environment
https://www.juniperresearch.com/press/iot-connections-to-reach-83-bn-by-2024
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://hbr.org/2020/09/how-green-is-your-software
https://www.washingtonian.com/2016/09/14/70-percent-worlds-web-traffic-flows-loudoun-county/
https://www.forbes.com/sites/danrunkevicius/2020/09/03/how-amazon-quietly-powers-the-internet/?sh=3de7a8653092
https://www.forbes.com/sites/danrunkevicius/2020/09/03/how-amazon-quietly-powers-the-internet/?sh=3de7a8653092
https://datacenterfrontier.com/data-centers-becoming-larger-players-in-power-markets/
https://datacenterfrontier.com/data-centers-becoming-larger-players-in-power-markets/
https://www.wired.com/story/amazon-google-microsoft-green-clouds-and-hyperscale-data-centers/
https://youtu.be/iEUPwHyIOBQ?t=945
https://youtu.be/iEUPwHyIOBQ?t=945

6

The Problem

To fight against the negative environmental effects and
PR of carbon emissions, large companies like Amazon
purchase carbon offsets. A carbon offset is essentially
a compensation. When a company cannot physically
reduce emissions in one area, it funds the reduction of
emissions in another area, to offset the first.

Offsets come in two flavours — mandatory and
voluntary. Hawkins tells us mandatory offsets (also
known as compliance offset) are purchased because
of a legally binding limit to the amount of greenhouse
gases that an organisation can release.

On the other hand, individuals and organisations may
purchase voluntary offsets at their discretion. As of 2019,
the mandatory offset market was $44 billion, while the
voluntary offset market was around $300 million.

One issue with carbon offset purchases is that there
is no globally agreed upon standard price for carbon
offsets. Hawkins states that it’s often the case that the
cost of buying an offset is much cheaper than the cost
of the associated climate damage. In addition to this,
voluntary offsets aren’t federally regulated, so individuals
are forced to perform their own research and make their
own assessments in terms of how much they should be
paying to offset their emissions.

As a prime example, Hawkins reveals that the Vatican
was once presented with offset certificates to make their
governing body carbon-neutral — but the millions of
trees promised were never actually planted.

The other obvious downside to offsets is that they
provide an avenue for wealthy companies to sidestep
actually improving or changing their processes, by
paying for an offset project elsewhere.

Another concern with carbon offsets is when the
calculations should stop.

The relationships are so complex and opaque that
it quickly becomes impossible to come up with a
straightforward number.

As a developer, when you create a button, have we ever
thought about all of the infrastructures behind creating
that one button? How do you calculate its carbon
footprint? Does the production of your computer’s parts
count towards the carbon footprint of your button?
Should the fossil fuels burned to power your laptop fold
into your calculations when deciding how many carbon
offsets to purchase? Not to mention the energy used by
data centres to store your code.

Calculating a carbon footprint is a
complex and multi-layered beast. The
more transparent corporations are
about their missions, the easier it will

Defining Carbon Offsets

https://www.washingtonpost.com/business/energy/why-carbon-offsets-dont-do-all-that-they-promise/2020/08/15/4480f11a-deb4-11ea-b4f1-25b762cdbbf4_story.html
https://www.washingtonpost.com/climate-solutions/2020/09/23/climate-curious-advice/
https://yaleclimateconnections.org/2019/05/are-carbon-offsets-a-scam/

7

What are the industries doing about it?

In the US, all tech giants communicate publicly about
the rising share of renewable energy sources in their
energy consumption, or their goal to be climate-neutral
in the near term.

In December 2020, Amazon became the world’s largest
corporate purchaser of renewable energy, with 187 solar
and wind projects across the globe, and projects to
power all its operations with renewable energy by 2025.

Google has been a carbon neutral company since 2007
and claims that its data centres use roughly half the
energy of a typical data centre. Being green is essential
to please both investors and customers and has
become a central part of corporate strategy – as shown
by the listing of the top ten green software companies.

Unsurprisingly, many global initiatives to promote
sustainable software are launched by the private sector.

Recently, Microsoft has initiated the Green Software
Foundation, together with the Linux Foundation. The
goal is to build an ecosystem of people, standards,
tooling, and practices to reduce carbon emissions
caused by software development. One of their activities
will be to develop a certification scheme and training
courses for green software developers. Another field of
action concerns the development of standards for the
software industry as a whole. The declared target is to
reduce greenhouse gas emissions by 45 percent by
2020, in accordance with the Paris Climate Agreement.

Stripe, Alphabet, Meta, Shopify, and McKinsey have also
launched a new carbon removal initiative worth $925
million.

The initiative — an Advance Market Commitment (AMC)
called Frontier — aims to speed up the development of
carbon removal technologies by guaranteeing demand
for them in the future The idea is to assure researchers,
entrepreneurs and investors that there will be a strong
ongoing market for these technologies.

What are the industries
doing about it?

https://blog.aboutamazon.eu/sustainability/amazon-announces-its-largest-single-renewable-energy-project-yet
https://blog.aboutamazon.eu/sustainability/amazon-announces-its-largest-single-renewable-energy-project-yet
https://techcrunch.com/2020/09/14/google-claims-net-zero-carbon-footprint-over-its-entire-lifetime-aims-to-only-use-carbon-free-energy-by-2030/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAqJR1gD9kry4B0fcaqpLJvi0qvADr0VaiGihSU1r1F1x73N8G3x55Wwy69EKnYT5b9wjo-qiVKTbGjYd0G8XGgI495zsVOcJ8zrC_Du2ivPUehU42g6_VqNF9XeCUsdm2wsDRmEDF8GHNcQeRfVfDrN9-LxtNYSIa6i6nhfAiDf
https://techcrunch.com/2020/09/14/google-claims-net-zero-carbon-footprint-over-its-entire-lifetime-aims-to-only-use-carbon-free-energy-by-2030/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAAqJR1gD9kry4B0fcaqpLJvi0qvADr0VaiGihSU1r1F1x73N8G3x55Wwy69EKnYT5b9wjo-qiVKTbGjYd0G8XGgI495zsVOcJ8zrC_Du2ivPUehU42g6_VqNF9XeCUsdm2wsDRmEDF8GHNcQeRfVfDrN9-LxtNYSIa6i6nhfAiDf
https://greensoftware.foundation/
https://greensoftware.foundation/
https://venturebeat.com/2021/05/25/microsoft-announces-the-green-software-foundation-to-promote-sustainable-app-development/
https://venturebeat.com/2021/05/25/microsoft-announces-the-green-software-foundation-to-promote-sustainable-app-development/
https://www.theverge.com/2022/4/12/23022343/stripe-alphabet-meta-shopify-mckinsey-launch-carbon-removal-initiative-frontier
https://www.theverge.com/2022/4/12/23022343/stripe-alphabet-meta-shopify-mckinsey-launch-carbon-removal-initiative-frontier
https://www.theverge.com/2022/4/12/23022343/stripe-alphabet-meta-shopify-mckinsey-launch-carbon-removal-initiative-frontier
https://frontierclimate.com/

8

What can we do about it?

What can we do about it?

According to Hawkins, the first step to creating change
is learning whether company data is stored in a carbon-
neutral zone or a zone contributing to greenhouse gas
emissions.

The Green Web Foundation is a resource that shows
what websites (including your own) are hosted by a
certified green company. Migrating your company’s data
to a carbon-neutral region is a big change, but it doesn’t
take too much effort to start a conversation about it and
explore what a migration would require.

As part of our company’s For Good strategy and in line
with our Climate Active carbon neutral certification Fuller
decided to make the first move on behalf of our clients.
We approached our host company, Digitize, about a
more sustainable hosting option, which they were very
interested in exploring.

“At Digitize we agree with Fuller that a more sustainable
approach has to be taken with regards to hosting
infrastructure in an environmentally friendly way,” said
Digitize Owner Joseph Mullins.

Our search for a green hosting partner with Digitize
has so far resulted in uncovering several businesses
who have been greenwashing this offer - further proof
of the importance of carrying out due diligence when
searching for green solutions. Peak bodies such as the
Green Software Foundation and Climate Active have
listings of accredited businesses that have verified
carbon neutral credentials.

Green Hosting

https://www.thegreenwebfoundation.org/

9

What can we do about it?

Using faster code
Many software developers write code to sustain future
technologies that run faster and more effectively.
Instead of writing code for such hardware, software
developers can optimise their code for present
hardware, rather than contributing to the requirement for
better hardware - let us not forget that the original Apollo
11 Guidance Computer source code for the command
and lunar modules came in at just under 4MB.

Storage
Many software developers are looking for the best
machinery that holds high volumes of data storage.
Rather than looking for these options, remember that
a lot of computers currently exist and are lying around
with less storage that is still valuable in terms of RAM.
Before purchasing the latest computer with the best
storage, consider more cost-effective options that do
not consume as much energy.

Maintenance and testing
Code, like anything else, is a victim to the march of time.
It needs to be revisited and maintained often, to make
sure it is working optimally. This practice is referred to
as refactoring. When refactoring, the aim should be
to improve the readability, performance and energy
efficieny of said code, ideally also adhering to the latest
best practices too.

Green Development
There are a few practical tips and tricks that software developers can implement to help lower
the carbon footprint of their work, especially when it comes to coding principals.

Consider environmental costs
Throwing more servers at a problem is a financially and
environmentally irresponsible way of solving problems
- developers need to stop and think of a greener and
leaner way.

Minimise the use of third-party
components
Whilst third-party applications can be important for
software developers, ensure that whatever is selected
to assist a system does not consume more memory and
data than is needed. Software developers can assess
whether these components are worth it by analysing
whether their use case outweighs memory usage.
For example, some plugins that we use fairly regularly
that have a negative impact (see: memory and
pagespeed) on site performance are:

The Events Calendar
Ninja Forms
Popup Builder
Popup Maker
Query Monitor
Site Kit by Google

WooCommerce
Wordfence
WP Forms
Yoast
Contact Form 7
Redirection

https://wordpress.org/plugins/the-events-calendar/
https://wordpress.org/plugins/ninja-forms/
https://wordpress.org/plugins/popup-builder/
https://wordpress.org/plugins/popup-maker/
https://wordpress.org/plugins/query-monitor/
https://wordpress.org/plugins/google-site-kit/
https://wordpress.org/plugins/woocommerce/
https://wordpress.org/plugins/wordfence/
https://wordpress.org/plugins/wpforms-lite/
https://wordpress.org/plugins/wordpress-seo/
https://wordpress.org/plugins/contact-form-7/
https://wordpress.org/plugins/redirection/

10

What can we do about it?

If green hosting or green development are not options,
we can still attempt to offset our emissions by using a
service like Cloverly.

Cloverly helps organisations go carbon neutral or carbon
negative. Their powerful API calculates carbon emissions
and purchases offsets and Renewable Energy Credits
in real time to mitigate the environmental impacts of
everyday activities.

A plugin called Carbon Offset, developed by Ari
Stathopoulos calculates the greenhouse emissions from
your website visits and integrates with Cloverly for offsets
and payments.

Gooding conveys Ari’s view on the issue.

“With WordPress powering 30 percent+ of the web, we’re
talking about millions of daily views,” he said.

“In the unlikely optimistic scenario that all of them
generate no more than 0.5g per page-load, WP sites
generate no less than 500 metric tons of carbon/day.

“This has nothing to do with WordPress. Instead it’s about
the 5MB image that the user wants on their frontpage,
the fancy wiggling JS animation that requires that extra
5 kb of JS, developers insisting on using jQuery in their
themes and plugins, the unused 300kb of CSS that a site
has, the Facebook widget, social sharing buttons that
use 100kb of JS, or the horrendous use of images of text
instead of plain text.”

Ari goes on to add that “it’s all data that gets
downloaded every single time and each time it does, the
server runs a few milliseconds more, the browser takes a
few more milliseconds to render. It all adds up to wasted
energy, energy that took real resources to generate and
in the process of doing that, it generated some more
carbon emissions.”

Carbon Offsetting

https://www.cloverly.com/
https://wordpress.org/plugins/carbon-offset/
http://aristath.github.io/
http://aristath.github.io/

11

The Principles

The Principles
Green Software Engineering is an emerging discipline
at the intersection of climate science, software
practices and architecture, electricity markets,
hardware and data centre design.

The Principles of Green Software Engineering are a core
set of competencies needed to define, build and run
green sustainable software applications.

These eight principles form a shared understanding
of what it means to be a Green Software Engineer
independent of application domain, industry,
organisation size or type, cloud vendor or self-hosted
and programming language or framework.

Through the synthesis of this knowledge, a Green
Software Engineer can make decisions which have
a meaningful impact on the carbon pollution of their
applications.

Who should read this? Anyone building, deploying or
managing applications.

12

The Principles

Greenhouse gases (GHG) act as a blanket increasing the
temperature on the surface of the Earth. This is a natural
phenomenon, however due to man-made carbon
pollution the global climate is changing much faster
than animals and plants can adapt. How human society
will adapt is still an open question.

There are many different GHGs. The most common
is carbon dioxide (CO2). To make calculations easier
we normalise all GHG numbers to carbon dioxide
equivalent (CO2eq). For example, 1 ton of methane has
the same warming effect as about 80 tons of CO2, so
we normalise it to 80 tons CO2eq. We may shorten even
further to just carbon, which is a term often used to refer
to all GHGs.

The goal set by the UN IPCC, and agreed and ratified by
195 states in the Paris Climate Agreement, is to reduce
carbon pollution so that the temperature increase
stabilises to a 1.5 °C increase by 2100.

The temperature increase on the Earth is dependent on
the total amount of carbon we have in the atmosphere,
not the rate at which we are emitting. To completely
halt the rate of temperature increase, we need to stop
adding carbon to the atmosphere or achieve net-zero
emissions.

Net-zero means for each gram of carbon we emit we
also extract 1 gram, so the overall mass of carbon in the
atmosphere remains fixed.

In order to achieve this, we need to mobilise as a global
community. We need to start immediately reducing
our carbon emissions with the goal of a 45 percent
reduction by 2030 and to reach net-zero by 2050.

Most electricity is still produced through the burning
of fossil fuels and is responsible for 49 percent of the
carbon emitted into the atmosphere.

All software consumes electricity in its execution.
From the applications running on your smartphone
to the training of machine learning models running
in data centres. One of the best ways we can reduce
electricity consumption and the subsequent emissions
of carbon pollution made by our software is to make our
applications more energy efficient.

The creators of software often do not have to bear the
burden of the electricity their software consumes. This is
what economists call an externality, i.e. someone else’s
problem. A sustainable application takes responsibility
for electricity it consumes and is architected to consume
as little as possible.

Energy is a measure of an amount of electricity
used. The standard unit for Energy is Joules or J,
however another common way of referring to energy
consumption is in kilowatt-hours or kWh. Throughout the
rest of this document we will be using kWh.

1. Carbon

2. Electricity

Build applications that are carbon efficient

Build applications that are energy efficient

https://www.theguardian.com/environment/2011/dec/06/what-is-ipcc
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#co2-emissions-by-sector
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#co2-emissions-by-sector

13

The Principles

The carbon intensity of electricity is a measure of how
much carbon (CO2eq) emissions are produced per
kilowatt-hour of electricity consumed.

The standard unit of carbon intensity is gCO2eq/kWh, or
grams of carbon per kilowatt-hour.

Not all electricity is produced in the same way. In
different locations and at different times, the electricity
is produced using a variety of sources with different
carbon emissions. Some sources, such as wind, solar,
or hydroelectric, are clean, renewable sources that
emit no carbon. Other fossil fuel sources emit varying

amounts of carbon to produce electricity. For example,
gas-burning power plants emit less carbon than coal-
burning power plants.

If your computer is plugged directly into a wind farm,
then the electricity it consumes would have a carbon
intensity of 0 gCO2eq/kWh, since a wind farm emits no
carbon to produce that electricity. Most people can’t
plug directly into wind farms, they instead plug into
power grids that are usually supplied with electricity
from a mix of sources that produce varying amounts of
carbon. Therefore, when plugged into a grid the carbon
intensity is usually a number greater than 0.

3. Carbon Intensity
Consume electricity with the lowest carbon intensity

Demand

Coal

Solar

Wind

Power Grid

Variability of Carbon Intensity

Carbon intensity changes by location since some
regions have an energy mix that contains more sources
of clean energy than other regions.

Carbon intensity also changes over time due to the
variable nature of renewable energy. For example, when
it’s cloudy or the wind isn’t blowing, carbon intensity
increases since more of the electricity in your mix is
coming from sources that emit carbon.

Carbon intensity changes over time as renewable
sources increase or decrease.

Demand for electricity varies during
the day, that demand needs to be
met by supply. Some of that supply
can easily control the power it
produces, e.g. a coal power
plant can burn less coal.

Some of that supply can’t easily control the power it
produces, e.g. a wind farm can’t control how much the
wind blows, it can only throw away (curtail) electricity
that was made essentially for free.

Fossil Fuel sources of power are usually scaled back first
and renewables scaled back last.

As a by-product of the way energy markets work as
demand for electricity goes down, usually the high
emitting fossil fuel sources of power are scaled back first
with renewables scaled back last.

Reducing the amount of electricity consumed in your
applications can help to decrease the carbon intensity
of the energy mix in local grids.

14

The Principles

Marginal Carbon Intensity

If you choose to consume more energy, that energy
comes from the marginal power plant. The marginal
power plant can control the energy it outputs.
Renewables cannot control the sun or the wind so
marginal power plants are often powered by fossil fuels.

The marginal plant emits carbon. At any moment we
have the carbon intensity of both the energy mix in the
grid, and the energy that would have to be brought
online to meet new demand. This is called the marginal
carbon intensity.

Fossil fueled power plants rarely scale down to 0. They
have a minimum functioning threshold, and some don’t
scale at all — they are considered consistent always-
on baseload. Because of this, we can sometimes reach
the perverse scenario where we throw away (curtail)
renewable energy that was created for free in order to
consume energy from fossil fuel power plants created
with a fuel that costs money.

Demand Shifting

There is currently little in the way of storage or buffering
in electrical grid systems. Normally electricity is
produced so supply always meets demand. If more
energy is being generated from renewables than is
needed to support demand, and all our storage options
are full, then we curtail (throw away) that clean energy.

One solution is to shift workloads to times and locations
where there is more supply of renewable energy. This is
called demand shifting.

There are moments when the marginal carbon intensity
reaches 0.

The marginal carbon intensity could be 0 gCO2eq/
kWh when new load would be met with supply from
a renewable source that would otherwise have been
curtailed.

If you can be flexible with when and where you run
workloads then you can then choose to consume
electricity when the carbon intensity is less and pause
when carbon intensity is high. For example, training a
machine learning model at a different time or region
where the carbon intensity is much lower.

Studies have shown that these actions can result in
a carbon reduction of as much as 45 percent to 99
percent depending on the number of renewables
powering the grid.

Look at your application end-to-end, identify
opportunities for being flexible regarding workloads
and use the carbon intensity of electricity as a signal for
when or if to run those workloads.

In this example the purple line is the carbon intensity of
electricity. If we shift a workload a little into the future
from its preferred start time of midnight, we can take
advantage of lower carbon intensity electricity.

Demand

Minimum functioning
threshhold

Curtailed renewables

C
ar

bo
n

In
te

ns
ity

Time

400

100

00:00 01:23

WORK

08:00
0

Calculating Carbon Intensity

There are several services available which allow you
to obtain real-time data regarding the current carbon
intensity of different electricity grids, some provide
estimates of future carbon intensity, some provide the
marginal carbon intensity.

Carbon Intensity API: Free resource for carbon intensity
data in the UK.

ElectricityMap: Free for non-commercial single country
use, premium solutions for commercial and multi-
country access.

WattTime: Free for a single grid region, premium
solutions for multi-grid and real-time marginal
emissions.

https://ieeexplore.ieee.org/document/6128960
https://carbonintensity.org.uk/
https://api.electricitymap.org/
https://www.watttime.org/

15

The Principles

The device you are reading this document from releases
some carbon in its creation. Once it reaches the end
of life, disposing of it may release more. Embodied
carbon (otherwise referred to as “Embedded Carbon”)
is the amount of carbon pollution emitted during the
creation and disposal of a device. When calculating
the total carbon pollution for the computers running
your software, you need to account for both the carbon
pollution to run the computer and the embodied carbon
of the computer.

Depending on the carbon intensity of your energy mix
the embodied carbon cost of a device can be significant
compared to the carbon cost of the electricity powering
it.

4. Embodied Carbon
Build applications that are hardware efficient

For example, a 2019 R640 Dell Server has an amortised
embedded carbon cost of 320 kg CO2eq/year. It’s also
expected to consume 1760.3 kWh/year. The average
carbon intensity in the EU is 0.276 kg CO2eq/kWh.

Therefore the total carbon cost is going to be 320 +
(0.276 * 1760.3) = 805 kg of carbon/year of which 320
kg or about 40 percent is from the embodied carbon.
Embodied carbon is a significant contributor to the total
emitted carbon of hardware.

By thinking of embodied carbon in this way, any device,
even one that is not consuming electricity, is effectively
releasing carbon over its lifetime.

Don’t waste hardware

By the time you buy a computer, it’s already emitted a
whole load of carbon. They also have an expiry date,
computers get old, can’t handle modern workloads,
and need to be refreshed. If you think about it this
way, hardware is then a proxy for carbon, so as Green
Software Engineer, we must be hardware-efficient if our
goal is to be carbon-efficient.

Extending the lifespan of hardware

A way to account for embodied carbon is to amortise
the carbon over the expected life span of a device. For
example, if it took 4 tons of carbon to build a server
and we expect the server to have a 4-year lifespan, we
can consider this equivalent to 1 ton of carbon being
released per year during its lifespan.

If we just added one more year to the lifespan of our
2019 R640 Dell Server then the amortised carbon drops
from 320kg CO2eq/year to 256 kg CO2eq/year.

Hardware is retired either because it breaks down or
because it struggles to handle modern workloads.z

Software cannot help with the first however if we focus
on building applications that can run on older hardware,
we can help with the second.

You can do many things to be hardware efficient, but
one thing you can do is help extend the expiry date
on hardware. Computers don’t wear out, there are no
moving parts, they just become obsolete. They become
obsolete because we are continually creating software
that pushes limits.

4 Year Lifespan

5 Year Lifespan

Embodied carbon of the same server amortised over 5 years.

Embodied carbon of a server amortised over 4 years.

https://i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-poweredge-r640.pdf

16

The Principles

Energy proportionality is a measure of the relationship
between power consumed in a computer system and
the rate at which useful work is done (its utilisation).

Utilisation is a measure of how much of a computer’s
resources are being used, usually given as a percent.
An idle computer has a low utilisation percentage and
isn’t being utilised. A computer running at its maximum
capacity has a high percentage and is being fully
utilised.

The relationship between power and utilisation is not
exactly proportional.

5. Energy Proportionality
Maximise the energy efficiency of hardware

Because of this, the more you utilise a computer, the
more efficient it becomes at converting electricity to
useful computing operations. Running your work on as
few servers as possible with the highest utilisation rate
maximises their energy efficiency.

An idle computer, even one at zero percent utilisation,
still draws electricity. This static power draw varies by
configuration and by hardware components, but all
components have some static power draw. This is one
of the reasons PCs, laptops, and mobile devices have
power-save modes available. If the device is idle it will
eventually trigger a hibernation mode and put the disk
and screen to sleep or even change the frequency of the
CPU. These power-save modes save on electricity, but
they have other trade-offs, such as a slower restart when
the device wakes up.

Servers are usually not configured for aggressive or even
minimal power-saving. Many server use-cases demand
full capacity as quickly as possible in response

to rapidly changing demands. This can leave many
servers in idle modes during low demand periods. An
idle server has a cost both from embedded carbon and
its inefficient utilisation.

The most efficient and green approach is to run your
work on as few servers as possible with the highest rate
of utilisation.

Po
w

er

Time

200w

100w

180w

0% 50% 100%
0

At 0 percent utilisation the computer still draws 100W, at
50 percent utilisation it draws 180W and at 100 percent
utilisation it draws 200W. The relationship between
power consumption and utilisation is not linear and it
doesn’t cross the origin.

A network is a series of switches, routers, and servers.
All the computers and network equipment in a network
consume electricity and have embedded carbon. The
internet is a global network of devices typically run
off the standard local grid energy mix or powered by
renewables.

When you send data across the internet, you are
sending that data through many devices in the network,
each one of those devices consuming electricity. As
a result, any data you send or receive over the internet
emits carbon.

6. Networking
Reduce the amount of data and distance it must travel across the network

Nodes in a network run on different energy mixes

The amount of carbon emitted to send data depends on
many factors including:
• Distance the data travels
• The number of hops between network devices
• The energy efficiency of the network devices
• The carbon intensity of energy in the region of each

device at the time the data is transmitted.
• The network protocol used to coordinate data

transmission - e.g. multiplex, header compression,
TLS/Quic

https://en.wikipedia.org/wiki/Energy_proportional_computing

17

The Principles

Demand shifting is the strategy of moving workloads
to regions or times when the carbon intensity is less,
or to put it another way when the supply of renewable
electricity is high.

7. Demand Shaping
Build carbon-aware applications.

If supply is high, increase the demand - do more in your
applications - if the supply is low, decrease demand - do
less in your applications.

A great example of this is video conferencing software.
Rather than streaming at the highest quality possible at
all times, they often shape the demand by reducing the
video quality to prioritise audio.

Another example is TCP/IP. The transfer speed ramps up
in response to how much data can broadcast over the
wire.

A third example is progressive enhancement with the
web. The web experience improves depending on the
resources and bandwidth available on the end-users
device. Microsoft have produced a guide for how you
can measure the power consumption of your frontend.

Demand shaping is a similar strategy, but instead of
moving demand to a different region or time, we shape
our demand, so it matches the existing supply.

Do More Do MoreDo Less

Re
so

ur
ce

Time

Demand
Supply

Carbon-aware vs. carbon-efficient

Carbon efficiency can be transparent to the end-user.
You can be more efficient at every level in converting
carbon to useful functionality while still keeping the user
experience the same.

But at some point, being transparently more carbon-
efficient isn’t enough. If the carbon cost of running an
application right now is too high, we can change the
user experience to reduce carbon emissions further.

At the point the user is aware the application is running
differently, it becomes a carbon-aware application.

Demand shaping carbon-aware applications is all about
the supply of carbon. When the carbon cost of running
your application becomes high, shape the demand
to match the supply of carbon. This can happen
automatically, or the user can make a choice.

Eco-modes

Eco-modes are often used in life: for instance in cars or
washing machines. When switched on, the performance
changes as they consume fewer resources (gas/
electricity) to perform the same task. It’s not cost-free
(otherwise, we would always choose eco-modes), so
we make trade-offs. Because it’s a trade-off, eco-modes
are almost always presented to a user as a choice, and
the user decides if they want to go with it and accept the
compromises.

Software applications can also have eco-modes which
when engaged changes application behaviour in
potentially two ways:
• Intelligence. Giving users information so they can

make informed decisions.
• Automatic. The application automatically makes

more aggressive decisions to reduce carbon
emissions.

Summary

Demand shaping is related to a broader concept in
sustainability, which is to reduce consumption. We
can achieve a lot by becoming more efficient with
resources, but at some point, we also just need to
consume less. As Green Software Engineers, to be
carbon-efficient means perhaps when the carbon
intensity is high, instead of demand shifting compute,
we consider cancelling it. Reducing the demands of our
application and the expectations of our end users.

https://principles.green/principles/carbon-intensity/#heading-demand-shifting
https://devblogs.microsoft.com/sustainable-software/how-to-measure-the-power-consumption-of-your-frontend-application/
https://devblogs.microsoft.com/sustainable-software/how-to-measure-the-power-consumption-of-your-frontend-application/

18

The Principles

Sustainability isn’t one optimisation, it’s thousands. One
piece of advice is to look end-to-end and take it step
by step. Often putting in the effort to understand the full
stack, from user experience to data centre design or
electricity grids yields simple solutions that significantly
improve carbon efficiency.

Weigh up the effort required to decarbonise vs
the potential rewards. Just like the broader global
sustainability movement, some sectors will be harder
to decarbonise than others. In computing, some
application domains will be harder to decarbonise than
others. Some parts of your application architecture will
be harder to decarbonise than others.

8. Measurement and Optimisation
Focus on step-by-step optimisations that increase the overall carbon efficiency

The key to success in optimisation is to choose a
measurement criterion that will give clear signals as to
where best to put optimisation efforts. For example, is
it worthwhile to spend two weeks reducing megabytes
from network communication if the database queries
cause 10 times more carbon to be emitted?

Rarely, can we directly measure our application’s carbon
cost, but if we follow a resource chain down and it
eventually has a link to carbon emissions, then that is a
good proxy for carbon.

Carbon

Measuring emitted carbon is a complex challenge, with
parts of the stack that need to be estimated rather than
measured, but with some effort, it’s possible.

Because of the variability of carbon intensity and other
dependencies, the total carbon emitted may change
depending on the time of day or region the application
is run.

The same application measured at different times will
result in different amounts of carbon. This could be a
good signal, especially if you are open to demand-
shifting workloads or it could be noise if you are
focussing on energy optimisations.

19

The Principles

Cost

At some point, the cost of electricity is factored into
most services. Building applications that run as cheaply
as possible is usually a good proxy for applications that
emit less carbon.

Performance

If you can architect an application that performs better
for the same level of utilisation, then this is likely to
reduce overall carbon.

Networking

The cost of electricity in networking is often not
considered. The number of services that offer unlimited
bandwidth for a single price means there is little price
pressure to reduce bandwidth.

Measuring and then reducing the amount and distance
your data must travel is a good proxy for reducing
carbon.

Energy

The energy consumed by your application may vary
every time it runs, this may be something you want to
take as an optimisation signal, or this may be something
you want to control for.

The same application run on different hardware may
result in different amounts of energy consumed
because of the differences in energy efficiency between
the hardware components.

Because of the energy proportionality principle, the
same application runs on the same hardware but at
different times may result in different amounts of energy
consumed because the utilisation of the hardware is
different between the two runs. That is, the hardware
might be running other applications during the second
run, and this changes the hardware’s overall energy
efficiency.

Overall, though, creating applications that consume less
electricity for the same human-perceptible performance
and output is a good proxy for carbon reduction.

There are devices, tools and libraries available that help
you measure the energy consumed by an application.
• PowerAPI A system monitoring library only works for

GNU/Linux and only calculates CPU energy; it does,
however, calculate the energy used per process.

• Intel Power Gadget Only works on Intel Core
processors, only calculates power consumption due
to the CPU and does not break this out on a per-
process basis.

• PowerCFG A Windows 10 tool allowing to have the
electrical consumption per process.

A thorough analysis of the various software and
hardware tools to measure energy consumption can be
found in the paper Software development methodology
in a Green IT environment.

http://powerapi.org/
https://software.intel.com/en-us/articles/intel-power-gadget
https://devblogs.microsoft.com/sustainable-software/measuring-your-application-power-and-carbon-impact-part-1/
https://tel.archives-ouvertes.fr/tel-01724069/document
https://tel.archives-ouvertes.fr/tel-01724069/document

20

Applying the principles

We’ve defined the problems, and we’ve defined
the principles that we should be aware of when
attempting to alleviate the problems — but how do we
actually apply those principles on a daily basis?

Computer Weekly outlines 8 ways to make your
applications more energy efficient.

Applying the principles

Reduce resolution of images and/or
send them less frequently

When pictures are used in mobile applications,
these pictures must be sent over the internet and
radio connection, which is a major source of energy
consumption. By reducing the size of these images
or uploading them less often, energy can be saved. In
particular, applications that run in a mobile browser can
benefit greatly from this quick win.

Run multiple applications on shared
servers

If each application runs on its own server, these servers
will be doing nothing useful most of the time. But they
are on, and consume electricity, all of the time. By letting
applications share servers, fewer servers are needed
to do the same work. Many applications can be easily
made suitable to run on shared servers.

https://www.computerweekly.com/blog/Green-Tech/8-ways-to-make-your-software-applications-more-energy-efficient
https://www.computerweekly.com/blog/Green-Tech/8-ways-to-make-your-software-applications-more-energy-efficient

21

Applying the principles

Delete historic data

An application that supports a certain business
process needs to store information about business
transactions. After the business transaction has been
concluded, most applications will retain data related
to that transaction for possible future reference. This
data is often kept ‘alive’ without being used. Year after
year, it sits in memory or on a hard disk and thus causes
energy consumption. By purging old transactions from
the application database, the storage needs can be
prevented from growing larger and larger, and energy
can be saved.

Refrain from frivolous features

Modern development toolkits make it possible to create
astonishing user interfaces, full of graphics, animations,
assisted editing, suggestions for further navigation, and
more. Sometimes these features are useful because
they enrich the user experience and make the user
more productive in the tasks they wish to accomplish.
When copying a file from one folder to another, do
you really need to watch sheets of paper fly from one
end to another? Features that offer no value to the user
generally do consume energy, which can be saved by
omitting them.

Compile interpreted languages

Many applications are developed in programming
languages that are not compiled to efficient machine
code before deployment, but that are translated by an
interpreter to machine code while the application runs.
This interpreted code typically requires more processing
power, and more servers consuming more energy
to do the same work. For some of these interpreted
languages, such as PHP, a compiler is also available. By
making small changes to the application code, it can be
made suitable for compilation, after which it can be run
more (energy-)efficiently.

Avoid chatty protocols

The communication protocols between components
of an application can involve many messages being
sent back and forth. In the case of smartphone apps,
radio traffic is a major source of energy consumption,
which can be reduced by not establishing a new radio
connection for each message, but saving up several
messages until a number of them can be sent at once.
For example, apps could save information to the server
only after a number of data-entry screens have been
completed, rather than after completing each screen.

Reduce data translation between
components

To make various components of a software system work
together, the data that they exchange may need to be
translated. Such translations can be computationally
expensive. Sometimes, multiple translation steps are
performed rather than translating from source to target
in a single step. Also, the intermediate formats can be
overly verbose, leading to big files being transferred that
could be much smaller. By simplifying the formats and
the translation steps, unnecessary energy consumption
can be reduced.

Log less

While developing software, it is useful to let the
application log the steps it is taking and their
intermediate results, to diagnose bugs or other
problems. Writing logging information to disk and
storing large log files consumes energy. But when
the finished application is deployed in a production
environment, much of this logging information is not
used. Employing a logging framework that allows the
degree of logging to be reduced when logs are not
used means unnecessary energy consumption can be
avoided.

22

Applying the principles

Increase your compute utilisation

Update your workload distribution and compute
resources so that you use less resources at a higher
utilisation. This reduces the amount of energy your
compute resources spend in an idle state, or using
energy without doing work.

If using virtual machines for compute resources and
they have low utilisation, consider reducing the size of
those virtual machines to increase utilisation. Smaller
virtual machines with higher utilisation usually use less
energy than larger virtual machines with lower utilisation,
given the same workload.

Optimise your database

Optimising which database you use as well as how the
data is stored can reduce the energy used to run the
database as well decrease idle time waiting for queries
to complete.
• Ensure you are using the best database for

interacting with your data set. For example, if you are
running many relational queries on your data set, a
relational database is better suited and likely more
efficient to use than NoSQL database.

• If no single database is designed to handle all
the ways you interact with your data set, consider
keeping redundant copies of your data in different
databases, and using each database for the subset
of interactions best suited for that database.

Evaluate migrating your workload to a PaaS (Platform as
a Service) where possible. Typically, PaaS solutions are
sized more appropriately for their workload and can run
those workloads at a high utilisation on their underlying
compute resources.

Consider using auto-scaling or burst capabilities for your
compute resources over statically allocating compute
resources for maximum capacity at all times. These
capabilities allow you to increase and decrease your
compute resources based on demand while keeping
the utilisation high on those compute resources.

• Consider using an index if your database offers it.
• Consider evaluating and optimising your queries.
• Consider using a database cache. In some cases,

caching can reduce redundant queries to the
database and decrease energy usage by the
database, especially for complex or compute-
intensive queries.

Optimise your network traffic

Reduce the amount of traffic your architecture creates
per operation as well as the distance each request and
response travels.

Consider using caching headers, which allows browser
caches and proxy caches to have enough information
to confidently cache static assets. Caching static assets
at the browser or proxy level allows future requests
for those assets to be handled by those caches and
reduces network traffic to your application.

Asim Hussain adds to these suggestions below.

Consider using a CDN to distribute your application’s
static assets closer to the source of a request. This
distribution of assets reduces the distance all requests
for static assets have to travel over the network.

Where possible, reduce the size and optimise your
bundles and static assets.

Consider using compression and decompression for
data you transmit over the network. Compression and
decompression usually takes less overall energy than
transmitting uncompressed data over the network.

23

Applying the principles

Reduce your number of microservices

A microservices architecture is an effective way to
focus a service around a specific business domain and
decentralise ownership and knowledge throughout
the team or system. Ensuring the appropriate level
of abstraction is important to help limit network
congestion, latency, and overall complexity.

Understand your latency limits

In many cases, web applications are designed by
default with very low latency expectations, assuming a
response to a request should happen immediately or as
soon as possible. This assumption can limit your options
for reducing the energy usage in your application.
Consider evaluating how your application is used and
if you can relax the latency limits in some areas, which
can increase your options for reducing carbon.

• Consider separating certain operations outside
of the request/response cycle. For example, if
there is a request to send an email that blocks the
response until the email is sent, you can instead
asynchronously send the email using a worker
process and unblock the response.

• Consider running worker processes a lower priority
than web processes. This prioritisation allows worker
processes to run only when compute resources are
not needed by web processes and keeps utilisation
high.

• Consider running the worker processes in a region
with lower carbon intensity.

• Consider delaying the worker process to run when
the carbon intensity is the lowest.

• Consider combining services, logically or
physically, where similar scale points exist to reduce
the footprint of the overall architecture.

• If two or more microservices are highly coupled,
consider co-locating to reduce network congestion
and latency.

• Use languages and technology stacks that optimise
the efficiency of a specific microservices function.
The independence and abstraction of functionality
to an API layer means you are free to make the
technical decisions that maximise utilisation in your
technical stack for each microservice.

• Consider running any resource-intensive
microservices in a region with a lower carbon
intensity.

24

Applying the principles

As Green Software Engineers, we believe everyone
has a part to play in the climate solution.

If you are reading this document and identify as ‘green’,
know you are part of a massive global movement of
people who care and are taking action. Sustainability
champions work in every discipline across engineering,
from designing silicon to designing user experiences.

Whatever sector, industry, role, technology – there is
always something you can do to have an impact.

Nothing happens in isolation, everything is connected,
and small changes lead to big changes.

Even the act of normalising a discussion about
sustainability in technical meetings will empower others
to raise their voice. That’s how you create change in any
organisation. Sustainability is enough, all by itself, to
justify our work.

As Green Software Engineers, we recognise there are
many advantages to building sustainable applications.

They are almost always cheaper, they are often more
performant, they are often more resilient.

But the primary reason we are practising Green Software
Engineering is for sustainability – everything else is an
added advantage.

Conclusion

References
https://www.mybib.com/j/LeanLegalAnt

https://www.mybib.com/j/LeanLegalAnt

